If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-4a-16=0
a = 1; b = -4; c = -16;
Δ = b2-4ac
Δ = -42-4·1·(-16)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{5}}{2*1}=\frac{4-4\sqrt{5}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{5}}{2*1}=\frac{4+4\sqrt{5}}{2} $
| 3a^2-12a-64=0 | | 3x+35=4x=15 | | 1000=x2(2.5)4 | | 4x(x+20)(3x-16)=0 | | -36=-6x^2-19x | | 5x^2=-38x+16 | | 1/2(p+1=3/4(p-2) | | 32x+6x^2=0 | | 7x+20=x−10 | | 7x-7=29 | | (2/5)x-3=(3/20)(4x-3) | | (3x=35)=(4x=15) | | 3x-2=13-2x | | Y=50/30x-90 | | Z+5/8=2z+7/8 | | 2/3x+3/2=32x+2/3 | | 5) 2·(x–3)–3·(4x–5)=17–8x | | 8x=6x=12 | | 8x–7(x+3)=x–21 | | -3(x-7)-2=19 | | 9x/13+4/13=4x/13−12/13 | | 5x^2-16x+9=0 | | y/10=6 | | x^2+(1+x)=0 | | 16^9x=15^x+8 | | -3(3+2x)=21 | | x4+x=84 | | x^+x=84 | | 3(2x+5)=-2(4x-3) | | 9x^+26x^2+25=0 | | 2(-3b+4)=-10 | | -4x-3+2x=2x+7+2 |